A, b
17
1.75-1.68=0.07
To solve this problem, we can break it down into steps:
Step 1: Determine the individual rates of work for A, B, and C.
If A needs 8 days to finish the task, then their work rate is 1/8 of the task per day.
If B needs 12 days to finish the task, then their work rate is 1/12 of the task per day.
If C needs 16 days to finish the task, then their work rate is 1/16 of the task per day.
Step 2: Calculate the combined work rate of A and B.
If A works for 2 days, their contribution will be 2 * (1/8) = 1/4 of the task completed.
If B works until 25% of the job is left for C, then they will complete 75% of the task.
Step 3: Calculate the time it takes for B to complete 75% of the task.
Since B’s work rate is 1/12 of the task per day, it will take B (75%)/(1/12) = 9 days to complete 75% of the task.
Step 4: Calculate the remaining work for C.
If B completes 75% of the task, then the remaining work for C is 100% – 75% = 25% of the task.
Step 5: Calculate the time it takes for C to complete the remaining work.
Since C’s work rate is 1/16 of the task per day, it will take C (25%)/(1/16) = 4 days to complete the remaining 25% of the task.
Step 6: Calculate the total time required.
A worked for 2 days, B worked for 9 days, and C worked for 4 days, totaling 2 + 9 + 4 = 15 days.
Therefore, it will take a total of 15 days for A to work for 2 days, B to work until 25% of the job is left, and C to complete the remaining work.
say the work is w and let no of days taken by b is ‘x’ which
we have to calculate
so work done by a in one day is w/6
work done by b in one day is w/x
a and b together can do work in 4 days ie=(w/6)+(w/x)=(w/4)
solving equation x=12
so no of days taken by b=12
3:7
b
volume of cylinder=volume of plane
pi*r*R*H=L*B*H
16PI*H=176
SO h= length=176/16*pi
ANser is 44pi
It is mentioned the the boat is tied with the rope to the tree. So first one will be crossing the river and the other with the help of the ropes tied to the tree will be able to pull the both back and then he will be crossing the river.
3606
Turn on a switch and leave it for some ten minutes. Turn it off, turn a second one on and open the door and go into the room. The glowing bulb corresponds to second switch. The bulb that is hot corresponds to first switch, as it was turned on for ten minutes and have heated up. The cold and not-glowing bulb corresponds to the third switch
GERMANY
Country Name..
sow