Mr. Brown painted the first whole house in 6 days plus 1/3 of the second house in the next 2 days. Mr. Black can paint a whole house in 8 days and had 8 days to work, so he painted the equivalent of 1 whole house. That accounts for 2-1/3 houses painted. Mr. Blue only needs to paint 2/3 of the last house, so 2/3 times 12 days equals 8 days.
( a ) BQDCJCMF
“TERMINAL” split it into the half we get “TERM” “INAL”
Now the first half is decreased by one and the next half is
increased by one, so we get:
“SDQLJOBM” (pls note in the ques we have “SDQIJOBM” where
‘L’ shud have come instead of ‘I’)
so “CREDIBLE” is to “BQDCJCMF”
A
1>=y>x => y belongs to (-infinity,1]
x belongs to (-infinity,y)
if both x and y are negitive z can be greater than zero and
can be greater than y(1 and 4 are true)
if y equals 1 then x can be equal to z(2 is true)
therefore y=z is not true for any value of x and y
Let’s assume the length of each train is ‘L’ and the speeds of the two trains are ‘V₁’ and ‘V₂’ respectively.
When the trains are moving in the opposite direction, their relative speed is the sum of their individual speeds. The total distance they need to cover is the sum of their lengths. Since they cross each other completely in 5 seconds, we can set up the following equation:
(V₁ + V₂) × 5 = 2L
When the trains are moving in the same direction, their relative speed is the difference between their individual speeds. The total distance they need to cover is the difference between their lengths. Since they cross each other completely in 15 seconds, we can set up the following equation:
(V₁ – V₂) × 15 = 2L
Now, let’s solve these equations to find the ratio of their speeds.
From the first equation, we have:
(V₁ + V₂) × 5 = 2L
V₁ + V₂ = (2L) / 5
From the second equation, we have:
(V₁ – V₂) × 15 = 2L
V₁ – V₂ = (2L) / 15
Let’s add these two equations together:
V₁ + V₂ + V₁ – V₂ = (2L) / 5 + (2L) / 15
2V₁ = (6L + 2L) / 15
2V₁ = (8L) / 15
V₁ = (4L) / 15
So, the speed of the first train is (4L) / 15.
Now, let’s substitute this value back into the first equation to find V₂:
(4L) / 15 + V₂ = (2L) / 5
V₂ = (2L) / 5 – (4L) / 15
V₂ = (6L – 4L) / 15
V₂ = (2L) / 15
Therefore, the speed of the second train is (2L) / 15.
The ratio of their speeds is given by:
(V₁ / V₂) = ((4L) / 15) / ((2L) / 15)
(V₁ / V₂) = 4L / 2L
(V₁ / V₂) = 2
So, the ratio of their speeds is 2:1.
A parabola is a conic section.
So cut a cone obliquely.
2* pi* r ( h + r )
r=3cm
h=7cm
2 * 22/7 *7 ( 10 ) = 440 sq cm
as i assume the time taken to complete the job is not to be
changed while increasing the employees as it does not
clearly states so……….
30 men wrk for 9 hrs
therefore for the work to be done if no of workers is
increases the no of hrs / day to work should decrease so
here s a inverse relation
solving further we get
30 = K /9 ==> K= 270
now
40 = 270/y ==> y= 6.75
therefore ans is d)none
b
121
Given:
In a group of 15 students,
7 have studied Latin,
8 have studied Greek,
3 have not studied either.
To find:
The number of students who studied both Latin and Greek.
Solution:
In a group of 15 students, have studied Latin, 8 have studied Greek, 3 have not studied either.
Therefore,
n(A∪B) = 15 – 3
n(A∪B) = 12
7 have studied Latin,
n(A) = 7
8 have studied Greek,
n(B) = 8
n(A∩B) is the number of students who studied both Latin and Greek.
n(A∩B) = n(A) + n(B) – n(A∪B)
n(A∩B) = 7 + 8 – 12
n(A∩B) = 15 – 12
n(A∩B) = 3
The number of students who studied both Latin and Greek is 3
Final answer:
3 of them studied both Latin and Greek.
Thus, the correct answer .3
5/9
50
350m