7 1/2
48,400
1/24-1/40
(5-3)/120
2/120
1/60
60 minutes
C. 4
A. Rs 140
7+8+11=26
B: 7/26*520= 140
3;4
1km is equal to 1000 meter
Therefore 225 meter is how many km
Then we have to cross multiply
1km – 1000 meter
? – 225 meter
0.225 km
Then we have to apply formula
Speed = Distance/Time
Speed = 0.225/12 sec
= 0.01875×3600sec
= 67.5
Therefore speed of train is = 67.5
Let’s assume the length of each train is ‘L’ and the speeds of the two trains are ‘V₁’ and ‘V₂’ respectively.
When the trains are moving in the opposite direction, their relative speed is the sum of their individual speeds. The total distance they need to cover is the sum of their lengths. Since they cross each other completely in 5 seconds, we can set up the following equation:
(V₁ + V₂) × 5 = 2L
When the trains are moving in the same direction, their relative speed is the difference between their individual speeds. The total distance they need to cover is the difference between their lengths. Since they cross each other completely in 15 seconds, we can set up the following equation:
(V₁ – V₂) × 15 = 2L
Now, let’s solve these equations to find the ratio of their speeds.
From the first equation, we have:
(V₁ + V₂) × 5 = 2L
V₁ + V₂ = (2L) / 5
From the second equation, we have:
(V₁ – V₂) × 15 = 2L
V₁ – V₂ = (2L) / 15
Let’s add these two equations together:
V₁ + V₂ + V₁ – V₂ = (2L) / 5 + (2L) / 15
2V₁ = (6L + 2L) / 15
2V₁ = (8L) / 15
V₁ = (4L) / 15
So, the speed of the first train is (4L) / 15.
Now, let’s substitute this value back into the first equation to find V₂:
(4L) / 15 + V₂ = (2L) / 5
V₂ = (2L) / 5 – (4L) / 15
V₂ = (6L – 4L) / 15
V₂ = (2L) / 15
Therefore, the speed of the second train is (2L) / 15.
The ratio of their speeds is given by:
(V₁ / V₂) = ((4L) / 15) / ((2L) / 15)
(V₁ / V₂) = 4L / 2L
(V₁ / V₂) = 2
So, the ratio of their speeds is 2:1.
419
i think it is a and b