To provide the best experiences, we use technologies like cookies to store and/or access device information. Consenting to these technologies will allow us to process data such as browsing behavior or unique IDs on this site. Not consenting or withdrawing consent, may adversely affect certain features and functions.
The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
The technical storage or access that is used exclusively for statistical purposes.The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
A
To determine how many consecutive zeros the product of S will end with, we need to find the highest power of 10 that divides the product. This is equivalent to finding the highest power of 5 that divides the product, since the number of factors of 2 will always be greater than the number of factors of 5.
The primes in S are {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97}.
There are 24 primes in S, so the product of S is:
2 x 3 x 5 x 7 x 11 x 13 x 17 x 19 x 23 x 29 x 31 x 37 x 41 x 43 x 47 x 53 x 59 x 61 x 67 x 71 x 73 x 79 x 83 x 89 x 97
We need to find the highest power of 5 that divides this product. To do this, we count the number of factors of 5 in the prime factorization of each number in S.
5 appears once: 5
5 appears once: 25
5 appears once: 35
5 appears once: 55
5 appears once: 65
5 appears once: 85
So, there are six factors of 5 in the product of S. However, we also need to consider the powers of 5 that arise from the factors 25, 35, 55, and 65.
25 = 5 x 5 appears once: 25
35 = 5 x 7 appears once: 35
55 = 5 x 11 appears once: 55
65 = 5 x 13 appears once: 65
Each of these numbers contributes an additional factor of 5 to the product of S. Therefore, there are 6 + 4 = 10 factors of 5 in the product of S.
Since each factor of 5 corresponds to a factor of 10, we know that the product of S will end with 10 zeros. Therefore, the product of S will end with 10 consecutive zeros