# This is checked so that we can skip
# middle five numbers in below loop
if(n % 2 == 0 or n % 3 == 0):
return False
for i in range(5,int(math.sqrt(n) + 1), 6):
if(n % i == 0 or n % (i + 2) == 0):
return False
return True
# Function to return the smallest
# prime number greater than N
def nextPrime(N):
# Base case
if (N <= 1):
return 2
prime = N
found = False
# Loop continuously until isPrime returns
# True for a number lower than n
while(not found):
prime = prime – 1 # if i use prime =prime+1 will get greater than n number.
# Python3 implementation of the approach
import math
# Function that returns True if n
# is prime else returns False
def isPrime(n):
# Corner cases
if(n <= 1):
return False
if(n <= 3):
return True
# This is checked so that we can skip
# middle five numbers in below loop
if(n % 2 == 0 or n % 3 == 0):
return False
for i in range(5,int(math.sqrt(n) + 1), 6):
if(n % i == 0 or n % (i + 2) == 0):
return False
return True
# Function to return the smallest
# prime number greater than N
def nextPrime(N):
# Base case
if (N <= 1):
return 2
prime = N
found = False
# Loop continuously until isPrime returns
# True for a number lower than n
while(not found):
prime = prime – 1 # if i use prime =prime+1 will get greater than n number.
if(isPrime(prime) == True):
found = True
return prime
# Driver code
N = 20
print(nextPrime(N))
# This code is contributed by ajay
#the output will be 19
import java.util.*;
public class Main
{
public static boolean isprime(int n)
{
int i,j=0;
for(i=1;i<=n/2;i++)
{
if(n%i==0)
{
j++;
}
}
if(j==1)
{
return true;
}
else
{
return false;
}
}
public static void isprim(int x)
{
int n=x+1;
while(true){
if(isprime(n))
{
break;
}
n++;
}
System.out.println(n);
}
public static void main(String[] args) {
Scanner sc =new Scanner(System.in);
System.out.println("enter number x");
int x=sc.nextInt();
isprim(x);
}
}
x=153
y=x*2
arr=[]
for(i=x+1; i<y;i++){
temp=true
for(j=2; j<i;j++){
if(i%j==0){
temp=false
}
}
if(temp==true){
arr.push(i)
}
}
console.log(arr[0]);